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The practical application of a theoretical explanation on which angle a ladder placed up at wall will 
skid can easily be overlooked, but the example is rather chosen to demonstrate some analytic 
techniques in classical mechanics, that might be forgotten and replaced by computer programs.  
This also includes the “principle of virtual forces”, which was earlier used in mechanical problems 
related to statics. 
 
Firstly we shall conduct a classical analysis to the problem, by resolving the components of the 
acting forces. Subsequent we shall demonstrate that we get the same result by applying the principle 
of virtual forces, which belong to the analytical mechanics, formulated by the Lagrange formalism. 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
            
 
   
 
 
 
 
 
 

1. Classical mechanical analysis 
The figure shows a ladder leaning to a wall. Under some general assumptions, we shall try to find 
the angle α with the x-direction, where the ladder starts to skid. This is of course dependent on the 
friction coefficient µ between the top and the foot of the ladder and the underlay. 
   
Static dynamics is sometimes more challenging than dynamic ones, because the resulting force is 
zero in every point. 
We have only drawn the ladder, but we shall later show that it makes no difference, whether there is 
a person climbing the ladder or not. 
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We resolve gravity from the centre of mass of the ladder in one component F1 along the ladder and 
one component F2 perpendicular to the ladder. From the figure we can see: 
 
    cossin 21 mgFogmgF    
 
We then place  F1 at the foot of the ladder and F2 at the top of the ladder.   
 
Both F1 and  F2 are then resolved after the directions of x and y.  
This gives, as it appear from the figure: 
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The ladder is affected by the two forces F1x  and F2y, which make the ladder skid, and the two 
opposite directed friction forces, which come from the two normal forces F1y  and F2x. 
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The ladder will not skid as long as, 
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Which can be reduced to: 
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A surprising simple result that confirms our expectations, at least for a very big and a very small 
friction coefficient. If the friction coefficient for example is 0.75, then the critical angle is 53.10. 
 
The coefficients at the top of the ladder, and at the bottom may be different, but that changes only 
the expression for the frictional force, but it does not alter the result fundamentally. 
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 Fx is the same as before, so we have the same condition that the ladder does not skid if: 
 
 Fx  <  Fgn    )cossin(sin)cos(sincos 21   mgmg  
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By division with cos2α  we find: 
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And for the corresponding quadratic equation in tan α. 
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The discriminator for the equation is: 1
2
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  If we put µ2 = µ1 = then 2)1(  d  and we find 
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2. The pinciple of virtual forces 
If U denotes the potential energy of a body, then we have, as it is well known that the force on the 
body is equal to minus the gradient of U. 
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In the analytical mechanics, where the poential energy is expressed in generalized coordinates, 
One may determine the force in the direction along r as: 
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If we have an expression for the potential energy, we may take advantage of this equation as an 
alternative to resolve the forces in components.  
  
We then make an addition to the problem by placing a person the distance d up the ladder, which 
itself has the length 2L. We shall use the same drawing as shown above. The ladder has its foot at 
(x,0) and the top of the ladder is at (0,y).   
We then have:  sin2cos2 LyandLx  . The height h, where the person is lifted above the 
ground is sindh  . The person has the mass M, and the ladder has the mass m. 

 
We then set the expression for the potential energy from the formula mgh. 
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From this expression we are able to determine the force in the x-direction, (which makes the ladder 
skid), and the force in the y-direction, which caused by the frictional force tend to impede the 
skidding of the ladder. We shall apply the following rewriting: 
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And likewise for y. 
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, we then find directly: 
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The condition that the ladder does not overturn is: Fx  < µ Fy, which results in the inequality:  
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We can see that we get exactly the same condition, as we did doing a classical analysis. 
But the result is achieved, perhaps in a more elegant, but also less transparent manner. 
We can also conclude that it makes no difference (for the physics) whether there is person on the 
ladder or not, when it skids.  


